Cinderalla Solution

Metabolism Diet

Get Instant Access

Balaban, R.S., Kantor, H.L., Katz, L.A. and Briggs, R.W. (1986). Relation between work and phosphate metabolite in the in vivo paced mammalian heart. 232,1121-1123.

Bennett, S.E., Bevington, A. and Walls, J. (1991). Active accumulation of creatine by cultured rat myoblasts. Biochem. Soc. Trans. 19, 172S.

Bertorine, T.E., Bhattacharya, S.K., Palmieri, G.M.A., Chesney, C.M., Pifer, D. and Baker, (1982). Muscle calcium and magnesium content in Duchenne muscular dystrophy. Neurology 32,1088-1092.

Bloch, K., Schoenheimer, R. and Rittenberg, D. (1941). Rate of formation and disappearance of body creatine in normal animals. J. Biol. Chem. 138, 155-166.

Boehm, E.A., Clark, J.F. and Radda, G.K. (1995). Metabolite utilization and possible compart-mentation in porcine carotid artery: a study using /3-guanidinopropionic acid. Am. J. Physiol. 37, C628-C635.

Brodie, C. and Sampson, S.R. (1988). Characterisation of thyroid hormone effects on Na-K pump and membrane potential of cultured rat skeletal muscle. Endocrinology 123,891-897.

Bullfield, G„ Siller, W.G., Wight, P.A.L. and Moore, K.J. (1984). X chromosome-linked muscular dystrophy mdx in the mouse. Proc. Nad. Acad. Sci. USA 81, 1189-1192.

Campbell, J.D. and Paul, R.J. (1992). The nature of fuel provision for the Na-K ATPase in vascular smooth muscle. J. Physiol. 447,67-82.

Chevli, R. and Fitch, C.D. (1979). /3-Guanidinopropionate and phosphorylated /3-guanidinopro-pionate as substrates for creatine kinase. Biochem. Med. 21,162-167.

Clark, J.F. and Dillon, P.F. (1995). Phosphocreatine and creatine kinase in energetic metabolism of the procine carotid artery. J. Vase. Res. 32, 24-30.

Clark, J.F., Khuchua, Z., Kuznetsov, A.V., Vasilyeva, L., Boehm, E. Radda, G.K. and Saks. V. (1994). Actions of the creatine analogue /3-guanidinopropionic acid on rat heart mitochondria. Biochem. J. 300,211-216.

Conway, M.A., Bristow, J.D., Blackledge, M.J., Rajagopalan, B. and Radda, G.K. (1988). Cardiac metabolism during exercise measured by magnetic resonance spectroscopy. Lancet 692,8612.

Denton, R.M., McCormack, J.G. and Edgell, N.J. (1979). Role of calcium ions in the regulation of intramitochondrial metabolism. Biochem. J. 190,107-117.

Dinking, J.S., Coker, R. and Fitch C.D. (1959). Creatine metabolism in hyperthyroidism. Proc. Soc. Exp. Biol. Med. 100,118-120.

Dunn, J.F., Tracey, I. and Radda, G.K. (1992). A 31P NMR study of muscle exercise metabolism in mdx mice: evidence for abnormal pH regulation. J. Neurol. Sci. 113,108-113.

Dunn, J.F., Tracey, I. and Radda, G.K. (1993). Exercise metabolism in duchenne muscular dystrophy: a biomedical and phosphorus-31 nuclear magnetic resonance study in mdx mice. Proc. Roy. Soc., Lond. Ser. Biol. Sci. 252,201-206.

Emery, A.E.H. (1988). Duchenne Muscular Dystrophy (revised edn). Oxford Medical Publications, Oxford University Press, Oxford.

Fitch, C.D. (1977). In: Pathogenesis of Human Muscular Dystrophies (Rowland, L. ed.) pp. 328-338. Excerpta Medica, New York.

Fitch, C.D. and Chevli, R. (1980). Inhibition of creatine and phosphocreatine accumulation in skeletal muscle and heart. Metabolism, 29,686-690.

Fitch, C.D. and Shields, R.P. (1966). Creatine metabolism in skeletal muscle. I. Creatine movement across muscle membranes. J. Biol. Chem. 241,3611-3614.

Fitch, C.D. and Sinton, D.W. (1964). A study of creatine metabolism in diseases causing muscle wasting. J. Clin. Invest. 43,444-451.

Fitch, C.D., Coker, R. and Dinning, J.S. (1960). Metabolism of creatine-1-CI 4 by vitamin E-defi-cient and hyperthyroid rats. Am. J. Physiol. 198, 1232-1234.

Fitch, C.D., Lucy, D.D., Bornhofen, J.H. and Dalrymple, G.V. (1968a). Creatine metabolism in skeletal muscle. II. Creatine kinetics in man. Neurology 18,32-42.

Fitch, C.D., Shields, R.P., Payne, W.F. and Dacus, J.F. (1968b). Creatine metabolism in skeletal muscle. III. Specificity of the creatine entry process. J. Biol. Chem. 243,2024-2027.

Fitch, C.D., Jellinek, M. and Mueller, E.J. (1974). Experimental depletion of creatine and phosphocreatine from skeletal muscle. J. Biol. Chem. 249,1060-1063.

Fitch, C.D., Jellinek, M., Fitts, R.H., Baldwin, K.M. and Holloszy, J.O. (1975). Am. J. Physiol. 228,1123-1125.

Gardner-Medwin, D. (1980). Clinical features and classification of the muscular dystrophies. Br. Med. Bull. 36,109-115.

Glesby, M.J., Rosenmann, E., Nylen, E.G. and Wrogemann, K. (1988). Serum CK, calcium, magnesium and oxidative phosphorylation in mdx mouse muscular dystrophy. Muscle and Nerve 11, 852-856.

GreenhafT, P.L., Bodin, K., Soderlund, K. and Hultman, E. (1993a). Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am. J. Physiol. 266, E725-E730.

Greenhaff, P.L., Casey, A., Short, A.H., Harris, R„ Soderlund, K. and Hultman, E. (1993b). Influence of oral creatine supplementation on muscle torque during repeated bouts of maximal voluntary exercise in man. Clin. Sci. 84,565-571.

Hansford, R.G. (1985). Relation between mitochondrial calcium transport and control of energy metabolism. Rev. Physiol. Biochem. Pharmacol. 102,1-72.

Harris, D.A. and Das, A.M. (1991). Control of mitochondrial ATP synthesis in the heart. Biochem. J. 280, 561-573.

Harris, R.C., Soderlund, K. and Hultman, E. (1992). Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci. 83, 367-374.

Heinemann, F.W. and Balaban, R.S. (1990). Control of mitochondrial respiration in the heart in vivo. Ann. Rev. Physiol. 52, 523-542.

Hoffman, E.P., Brown, R.H. and Kunkel, L.M. (1987). Dystrophin: the protein product of the DMD locus. Cell 51,919-928.

Hoult, D.I., Busby, S.J.W., Gadian, D.A., Radda, G.K., Richards, R.E. and Seely, P.J. (1974). Observation of tissue metabolites using "P nuclear magnetic resonance. Nature, Lond. 252, 285-287.

Ingwall, J.S. (1982). Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles. Am. J. Physiol. 242, H729-H739.

Jacobus, W.E. (1985). Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Ann. Rev. Physiol. 47, 707-725.

Jacobus, W.E., Moreadith, R.W. and Vandegaer, K.M.J. (1982). Mitochondrial respiratory control. J. Biol. Chem. 257,2397-2401.

Jennings, R.B., Reimer, K.A., Hill, M.L. and Meyer, S.E. (1981). Total ischemia in dog hearts, in vitro. Circ. Res. 49, 892-900.

Kapelko, V.l., Saks, V.A., Novikova, N.A., Golikov, M.A., Kupriyanov, V.V. and Popovich, M.I. (1989). J. Mol. Cell. Cardiol. 21 (suppl. 1), 79-83.

Katz, L.A., Swain, J.A., Portman, M.A. and Balaban, R.S. (1989). Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am. J. Physiol. 255, H189 H196.

Ku, C-P. and Passow, H. (1980). Creatine and creatinine transport in old and young human red blood cells. Biochim. Biophys. Acta 600,212-227.

LaNoue, K.F., Jeffries, F.M. and Radda, G.K. (1985). Kinetic control of mitochondrial ATP synthesis. Biochemistry 25, 7667-7675.

LaNoue, K.F. and B. Wan. (1991). Control of respiration in perfused rat hearts. J. Mol. Cell. Cardiol. 23 (suppl. ill), 3642.

Loike, J.D., Somes, M. and Silverstein, S.C. (1986a). Creatine uptake, metabolism and efflux in human monocytes and macrophages. Am. J. Physiol. 251, C128-C135.

Loike, J.D., Zalutsky, D.L. and Silverstein, S.C. (1986b). Creatine regulates expression of creatine transport in L6 muscle cells. Clin. Res. 34,548A.

Loike, J.D., Zalutsky, D.L., Kaback, E., Armand, F.M. and Silverstein, S.C. (1988). Extracellular creatine regulates creatine transport in rat and human muscle cells. Proc. Natl. Acad. Sei. USA 85,807-811.

Marescau, B., De Deyn, P., Wiechert., van Gorp, L. and Lowenthal, A. (1986). Comparative study of guanidino compounds in serum and brain of mouse, rat, rabbit and man. J. Neurochem. 46, 717-720.

McCormack, J.G., Halestrap, A.P. and Denton, R.M. (1990). Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 70,391^125.

Mekhfi, H., Hoerter, J., Lauer, C., Wisnewsky, C„ Schwartz, K. and Ventura-Clapier, R. (1990). Myocardial adaptation to creatine deficiency in rats fed with beta-guanidinopropionic acid, a creatine analogue. Am. J. Physiol. 258, H1151-H1158.

Meyer, R.A., Brown, T.R. and Kushmerick, M.J. (1985). Phosphorus nuclear magnetic resonance of fast-and slow-twitch muscle. Am. J. Physiol. 248, C279-C287.

Meyer, R.A., Brown, T.R., Krilowicz, B.L. and Kushmerick, M.J. (1986). Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle. Am. J. Physiol. 250, C264-C274.

Meyer, R.A. (1989). Linear dependence of muscle phosphocreatine kinetics on total creatine content. Am. J. Physiol. 251 (CellPhysiol. 26), CI 149-C1157.

Moerland, T.S., Wolf, N.G. and Kushmerick, M.J. (1989). Administration of creatine analogue induced isomyosin transitions in muscle. Am. J. Physiol. 257, C810-C816.

Mokri, B. and Engel, A.G. (1975). Duchenne dystrophy; Electron microscopic findings point to a basic or early abnormality in the plasma membrane of muscle fibres. Neurology, 25,1111-1120.

Möller, A. and Hamprecht, B. (1989). Creatine transport in cultured cells of rat and mouse brain. J. Neurochem. 52, 544-550.

Moreno-Sanchez, M., Hogue, B.A. and Hansford, R.G. (1990). Influence of NAD-linked dehydrogenase activity on flux through oxidative phosphorylation. Biochem. J. 268,421^428.

Nudel, U., Robzyk, K. and Yaffe, D. (1988). Expression of the putative duchenne muscular dystrophy gene in differentiated myogenic cell cultures and the brain. Nature 33,635-638.

Odoom, J.E., Kemp, G.K. and Radda, G.K. (1993). Control of intracellular creatine concentration in a mouse myoblast cell line. Biochem. Soc. Trans. 21.441S.

Otten, J.V., Fitch, C.D., Wheatley, J.B. and Fischer, V.W. (1986). Thyrotoxic myopathy in mice: accentuation by creatine transport inhibitor. Metabolism 35,481—484.

Paternostro, G., Featherstone, J., Harris, D.A. and Radda, G.K. (1992). Effect of a work jump on the levels of high energy phosphate compounds in the hearts of hypertensive rats studied by 31P NMR. J. Mol. Cell. Cardiol. 24 (suppl. V), 101.

Paul, R.J. (1980). In: The Handbook of Physiology: The Cardiovascular System (Geiger, S.R., ed.) pp. 201-235. American Journal of Physiology, Bethesda, Maryland.

Paul, R.J. (1983). Functional compartmentalization of oxidative and glycolytic metabolism in vascular smooth muscle. Am. J. Physiol. 244, C399-C409.

Paul, R.J., Bauer, M. and Pease, W. (1979). Vascular smooth muscle: aerobic glycolysis linked to sodium and potassium transport processes. Science, 206,1414-1416.

Portman, M.A., Heinemann, F.W. and Balaban, R.S. (1989). Developmental changes in the relation between phosphate metabolites and oxygen consumption in the sheep heart in vivo. J. Clin. Invest. 83,456-464.

Radda, G.K. (1986). The use of NMR spectroscopy for the understanding of disease. Science 233, 640-645.

Rix, L.K., Clark, J.F., Thompson, C.H., Radda, G.K. and Seymour, A-M.L. (1993). Determination of creatine kinase fluxes in the post myocardial infarcted rat heart. 10th Annual Congress of the European Society for Magnetic Resonance in Medicine and Biology.

Rose, W.C. (1933). The metabolism of creatine and creatinine. Ann. Rev. Biochem. 2,187-207.

Rose, W.C. (1935). The metabolism of creatine and creatinine. Ann. Rev. Biochem. 4,243-263.

Saks, V.A., Belikova, O.Y. and Kuznetsov, A.V. (1991). In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intercellular diffusion of ADP. Biochim. Biophys. Acta 1074,302-311.

Saks, V.A., Vasil'eva, E., Kuznetsov, A.V., Lyapina, S., Petrova, L. and Perov, N.A. (1993). Retarded diffusion of ADP in cardiomyocytes: possible role of mitochondrial outer membrane and creatine kinase in cellular regulation of oxidative phosphorylation. Biochim. Biophys. Acta 1144,134-148.

Seppet, E.K., Adoyaan, A.J., Kallikorm, A.P., Chernousova, G.B., Lyulina, N.V., Sharov, V.G., Severin, V.V., Popovich, M.I. and Saks, V.A. (1985). Hormone regulation of cardiac energy metabolism. Biochem. Med. 34,267-279.

Seymour, A.-M.L., Harmsen, E. and Radda, G.K. (1987). Is ADP the primary regulator of respiration in the heart? Biochem. Soc. Trans. 15,710.

Seymour, A.-M.L., Eldar, H. and Radda, G.K. (1990). Hyperthyroidism results in increased glycolytic capacity in the rat heart. A "P NMR study. Biochim. Biophys. Acta 1055, 107-116.

Shields, R.P. and Whitehair, C.K. (1973). Muscle creatine: in vivo depletion by feeding /3-guani-dino propionic acid. Can. J. Biochem. 51,1046-1049.

Shields, R.P., Whitehair, C.K., Carrow, R.E., Heusner, WW. and Vanthuss, W.D. (1975). In vivo depletion of muscle creatine. Lab. Invest. 33,151-158.

Shoubridge, E.A. and Radda, G.K. (1984). A "P-nuclear magnetic resonance study of skeletal muscle metabolism in rats depleted of creatine with the analogue j3-guanidinoproprionic acid. Biochem. Biophys. Acta 805,79-88.

Shoubridge, E.A., Jeffry, F.M.H., Keogh, J.M., Radda, G.K. and Seymour, A.-M.L. (1985a). Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue /3-guanidinopropionic acid. Biochem. Biophys. Acta 847,25-32.

Shoubridge, E.A., Challis, R.A.J., Hayes, D.J. and Radda, G.K. (1985b). Biochemical adaptation in skeletal muscle of rats depleted of creatine with the substrate analogue /3-guanidinopropionic acid. Biochem. J. 232,125-131.

Syllm-Rapoport, I., Daniel, A. and Rapoport, S. (1980). Creatine transport into red blood cells. Acta Biol. Med. Germ. 39, 771-779.

Syllm-Rapoport, I., Daniel, A., Starck, H., Goetze, W., Hartwig, A., Gross, J. and Rapoport, S. (1981). Creatine in red cells: transport and erythropoietic dynamics. Acta Biol. Med. Germ. 40, 653-659.

Unitt, J.F., McCormack, J.G., Reid, D„ McLachlan, L.K. and England, P.J. (1989). Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using 31P NMR and ruthenium red. Biochem. J. 262,293-301.

Unitt, J.F., Radda, G.K. and Seymour, A.-M.L. (1993). The acute effects of the creatine analogue, /3-guanidinopropionic acid on cardiac energy metabolism and function. Biochem. Biophys. Acta 1143,91-96.

Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K. and Eppenberger, M. (1992). Intracellular compartmentation structure and function of creatine kinase isoenzymes in tissues with high fluctuating energy demands: the "phosphocreatine circuit" for cellular energy homeostasis. Biochem. J. 281,21 40.

Webster, C., Silberstein, L., Hays, A.P. and Blau, H.M. (1988). Fast muscle fibres are preferentially affected in duchenne muscular dystrophy. Cell52,503-513.

Weiss, R.G., Bottomley, P.A., Hardy, C.J. and Gerstenblith, G. (1990). Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. New Engl. J. Med. 323,1593-1600.

Wrogemann, K. and Pena, S.D.J. (1976). Mitochondrial calcium overload: a general mechanism for cell necrosis in muscle diseases. Lancet i, 672-673.

Zweier, J.L., Jacobus, W.E., Korecky, B. and Brandejs-Berry, Y. (1991). Bioenergetic consequences of cardiac phosphocreatine depletion induced by creatine analogue feeding. J. Biol. Chem. 266, 20296-20304.

Was this article helpful?

0 0
Tips and Tricks For Boosting Your Metabolism

Tips and Tricks For Boosting Your Metabolism

So maybe instead of being a pencil-neck dweeb, youre a bit of a fatty. Well, thats no problem either. Because this bonus will show you exactly how to burn that fat off AS you put on muscle. By boosting your metabolism and working out the way you normally do, you will get rid of all that chub and gain the hard, rippled muscles youve been dreaming of.

Get My Free Ebook

Post a comment