The Big Heart Disease Lie

Natural Ways to Treat Cardiovascular Disease

Get Instant Access

1. Heimer, L., The Human Brain and Spinal Cord, 2nd ed., Springer-Verlag, New York, 1995, chap. 24.

2. Peckham, P.H., Mortimer, J.T., and Marsolais, E.B., Alteration in the force and fatigability of skeletal muscle in quadriplegic humans following exercise induced by chronic electrical stimulation, Clin. Orthop., 114, 326, 1976.

3. Creasey, G., Restoration of bladder, bowel, and sexual function, Top. Spinal Cord Inj. Rehabil, 5, 21, 1999.

4. Kalra, L., The influence of stroke unit rehabilitation on functional recovery from stroke, Stroke, 25, 821, 1994.

5. Chae, J. et al., Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia, Stroke, 29, 975, 1998.

6. McColl, M. and Bickenbach, J., Introduction to Disability, W.B. Saunders, London, 1998.

7. Dzienkowski, R. et al., Cerebral palsy: a compressive review, Nurse Practitioner, 45, 1996.

8. Triolo, R., Kobetic, R., and Betz, R., Standing and walking with FNS: technical and clinical challenges, in Human Motion Analysis: Current Applications and Future Directions, Harris, G. and Smith P., Eds., IEEE Press, New York, 1996, p. 318.

Benton, L.A. et al., Functional Electrical Stimulation: A Practical Guide, 2nd ed., Rancho Los Amigos Medical Center, California, 1981.

Edelberg, R., Electrical properties of the skin, in Biophysical Properties of the Skin, Elden, H.R., Ed., Wiley, New York, 1971, p. 513.

Memberg, W.D. et al., An analysis of the reliability of percutaneous intramuscular electrodes in upper extremity FNS applications, IEEE Trans. Rehabil. Eng., 1, 126, 1993.

Scheiner, A., Polando, G., and Marsolais, E., Design and clinical application of a double helix electrode for functional electrical stimulation, IEEE Trans. Biomed. Eng., 41, 425, 1984.

Gradjean, P.A. and Mortimer, J.T., Recruitment properties of monopolar and bipolar epimysial electrodes, Ann. Biomed. Eng., 14, 53, 1986. Memberg, W., Peckham, P., and Keith, M., A surgically implanted intramuscular electrode for an implantable neuromuscular stimulation system, IEEE Trans. Rehabil. Eng., 2, 80, 1994.

Naples, G. et al. A spiral nerve cuff electrode for peripheral nerve stimulation, IEEE Trans. Biomed. Eng., 35, 905, 1988.

McNeal, D.R. and Bowman, B.R., Selective activation of muscles using peripheral nerve electrodes, Med. Biol. Eng. Comput., 23, 249, 1985. Barone, F.C. et al., A bipolar electrode for peripheral nerve stimulation, Brain Res. Bull., 4, 421, 1979.

Veraart, C., Grill, W.M., and Mortimer, J.T., Selective control of muscle activation with a multipolar nerve cuff electrode, IEEE Trans. Biomed. Eng., 40, 640, 1993.

Scott, T., Peckham, P.H., and Kilgore, K., Tri-state myoelectric control of bilateral upper extremity neuroprostheses for tetraplegic individuals, IEEE Trans. Rehabil. Eng., 4, 251, 1996.

Peckham, P., Mortimer, J., and Marsolais, E., Controlled prehension and release in the C5 quadriplegic elicited by functional electrical stimulation of the paralyzed forearm musculature, Ann. Biomed. Eng., 8, 369, 1980. Saxena, A., Nikolic, S., and Popovic, D., An EMG-controlled grasping system for tetraplegics, J. Rehabil. Res. Dev., 32, 17, 1995.

Hart, R., Kilgore, K., Peckham, P.H., A comparison between control methods for implanted FES hand-grasp systems, IEEE Trans. Rehabil. Eng., 6, 1, 1998. Johnson, M. and Peckham, P.H., Evaluation of shoulder movement as a command control source, IEEE Trans. Biomed. Eng., 37, 876, 1990. Johnson, M. et al., Implantable transducer for two-degree-of-freedom joint angle sensing, IEEE Trans. Rehabil. Eng., 7, 349, 1999.

Nathan, R., Control strategies in FNS systems for the upper extremities, Crit. Rev. Biomed. Eng., 21, 485, 1993.

Graupe, D. and Kohn, K., Transcutaneous functional electrical stimulation of certain traumatic complete thoracic paraplegics for independent short-distance ambulation, Neurol. Res., 19, 323, 1997.

Hoshimiya, N. et al., A multichannel FES system for the restoration of motor functions in high spinal cord injury patients: a respiration-controlled system for multijoint upper extremity, IEEE Trans. Biomed. Eng., 36, 754, 1989. Handa, Y. et al., A voice controlled functional electrical stimulation system for the paralyzed hand, Jpn. J. Med. Electron. Biol. Eng., 23, 292, 1985. Handa, Y. and Hoshimiya, N., Functional electrical stimulation for the control of the upper extremities, Med. Prog. Technol, 12, 51, 1987.

30. Nathan, R. and Ohry, A., Upper limb functions regained in quadriplegia: a hybrid computerized FNS system, Arch. Phys. Med. Rehabil., 71, 415, 1990.

31. Lauer, R., Peckham, P.H., and Kilgore, K., EEG-based control of a hand grasp neuroprosthesis, NeuroReport, 8, 1767, 1999.

32. Scott, T., Peckham, P.H., and Keith, M., Upper extremity neuroprostheses using functional electrical stimulation, in Clinical Neurology: International Practice and Research, Brindley, G. and Rushton, D., Eds., Balliere Tindall, London, 1995.

33. Lauer, R.T. et al., Applications of cortical signals to neuroprosthetic control: a critical review, IEEE Trans. Rehabil. Eng., 8, 205, 2000.

34. Mortimer, J. et al., Shoulder position transduction for proportional two axis control of orthotic/prosthetic system, in The Control of Upper-Extremity Prostheses and Orthoses, Herberts, P. et al., Eds., Charles C Thomas, Springfield, IL, 1974.

35. Shannon, C. and Weaver, W., The Mathematical Theory of Communication, The University of Illinois Press, Urbana, 1949.

36. Schwartz, M., Information Transmission, Modulation and Noise, McGraw-Hill, New York, 1980.

37. Schmidt, E. et al., Fine control of operantly conditioned firing patterns of cortical neurons, Exper. Neurol., 61, 349, 1978.

38. Meek, S. and Fetherston, S., Comparison of signal-to-noise ratio of myoelectric filters for prosthesis control, J. Rehabil. Res. Dev., 29, 9, 1992.

39. Welford, A., Fundamentals of Skill, Butler & Tanner, London, 1971.

40. Doubler, J. and Childress, D., An analysis of extended physiological propri-oception as a prosthesis-control technique, J. Rehabil. Res. Dev., 21, 5, 1984.

41. Doubler, J. and Childress, D., Design and evaluation of a prosthetic control system based on the concept of extended physiological proprioception, J. Rehabil. Res. Dev., 21, 19, 1984.

42. Guyton, A., Textbook of Medical Physiology, 8th ed., W.B. Saunders, Philadelphia, 1991, chap. 22.

43. Neuman, M.R., Therapeutic and prosthetic devices, in Medical Instrumentation: Application and Design, 2nd ed., Webster, J., Ed., Houghton-Mifflin, Boston, 1992, chap. 13.

44. Roy, O.Z., The current status of cardiac pacing, CRC Crit. Rev. Bioeng., 2, 259, 1975.

45. Harthorne, J.W., Pacemaker leads, Int. J. Cardiol., 6, 423, 1984.

46. Furman, S. and Escher, D., Principles and Techniques of Cardiac Pacing, Harper & Row, New York, 1970.

47. Liberson, W.T. et al., Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients, Arch. Phys. Med. Rehabil., 42, 101, 1961.

48. Long, C. and Masciarelli, V., An electrophysiological splint for the hand, Arch. Phys. Med. Rehabil., 44, 449, 1963.

49. Mortimer, J., Motor prostheses, in Handbook of Physiology: The Nervous System II, Brookhart, J.M. and Mountcastle, V.B., Eds., American Physiological Society, Bethesda, MD, 1981, p. 155.

50. Akers, J.M. et al., Tissue response to chronically stimulated implanted epimy-sial and intramuscular electrodes, IEEE Trans. Rehabil. Eng., 5, 207, 1997.

van den Honert, C. and Mortimer, J.T., Generation of unidirectionally propagated action potentials in a peripheral nerve by brief stimuli, Science, 206, 1311, 1979.

Chae, J. et al., Functional neuromuscular stimulation, in Rehabilitation Medicine: Principles and Practice, 3rd ed., DeLisa, J.A. and Gans, B.M., Eds., Lippincott-Raven, Philadelpiha, 1998.

Zafar, M. and Van Doren, C., Effectiveness of supplemental grasp-force feedback in the presence of vision, Med. Biol Eng. Comput., 38, 267, 2000. Johnson, K.O. et al., Perspectives on the role of afferent signals in control of motor neuroprostheses, Med. Eng. Phys., 17, 481, 1995.

Bhadra, N., Kilgore, K.L., and Peckham, P.H., Implanted stimulators for restoration of function in spinal cord injury, Med. Eng. Phys., 23, 19, 2001. Inmann, A. et al., Signals from skin mechanoreceptors used in control of a hand grasp neuroprosthesis, NeuroReport, 12, 2817, 2001. Haugland, M. and Sinkjaer, T., Interfacing the body's own sensing receptors into neural prosthesis devices, Technol. Health Care, 7, 393, 1999. Cameron, T. et al., The effect of wrist angle on electrically evoked hand opening in patients with spastic hemiplegia, IEEE Trans. Rehabil. Eng., 7, 109, 1999.

Prochazka, A. et al., The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia, Arch. Phys. Med. Rehabil., 78, 608, 1997.

Weingarden, H.P. et al., Hybrid functional electrical stimulation orthosis system for the upper limb: effects on spasticity in chronic stable hemiplegia, Am. J. Phys. Med. Rehabil., 77, 276, 1998.

Weingarden, H.P. et al., Upper limb functional electrical stimulation for walker ambulation in hemiplegia: a case report, Am. J. Phys. Med. Rehabil., 76, 63,


Triolo, R. et al., Challenges to clinical deployment of upper limb neuroprostheses, J. Rehabil. Res. Dev., 33, 111, 1996.

Kraft, G.H., Fitts, S.S., and Hammond, M.C., Techniques to improve function of the arm and hand in chronic hemiplegia, Arch. Phys. Med. Rehabil., 73, 220, 1992.

Peckham, P.H. et al., Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study, Arch. Phys. Med. Rehabil., 82, 1380, 2001.

Stroh-Wuolle, K. et al., Satisfaction with and usage of a hand neuroprosthesis, Arch. Phys. Med. Rehabil., 80, 206, 1999.

Smith, B. et al., An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle, IEEE Trans. Biomed. Eng., 45, 463,


Kilgore, K.L. et al., An implanted upper-extremity neuroprosthesis. Follow-

up of five patients, J. Bone Joint Surg. Am., 79, 533, 1997.

Wijman, C.A. et al., Functional evaluation of quadriplegic patients using a hand neuroprosthesis, Arch. Phys. Med. Rehabil., 71, 1053, 1990.

Stein, R.B., Functional electrical stimulation after spinal cord injury, J. Neu-

rotrauma, 16, 713, 1999.

Wieler, M. et al., Multicenter evaluation of electrical stimulation systems for walking, Arch. Phys. Med. Rehabil., 80, 495, 1999.

Taylor, P. N et al., Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking, Phys. Med. Rehabil., 80, 1577, 1999. Taylor, P.N. et al., Patients' perceptions of the Odstock dropped foot stimulator (ODFS), Clin. Rehabil., 13, 439, 1999.

Kralj, A., Acimovic, R., and Stanic, U., Enhancement of hemiplegic patient rehabilitation by means of functional electrical stimulation, Prosthet. Orthot. Int., 17, 107, 1993.

Kralj, A. and Bajd, T., Functional Electrical Stimulation: Standing and Walking after Spinal Cord Injury, CRC Press, Boca Raton, FL, 1989. Grill, W.M. and Kirsch, R., Neuroprosthetic Applications of electrical stimulation, Asst. Technol., 12, 6, 2000.

Graupe, D. et al., Ambulation by traumatic T4-12 paraplegics using functional neuromuscular stimulation, CRC Crit. Rev. Neurosurg., 8, 221, 1998. Graupe, D. and Kohn, K.H., Functional neuromuscular stimulator for short-distance ambulation by certain thoracic-level spinal-cord-injured paraplegics, Surg. Neurol., 50, 202, 1998.

Popovic, M.R. et al., Functional electrical stimulation for grasping and walking: indications and limitations, Spinal Cord, 39, 403, 2001. Creasey, G.H. et al., An implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: a multicenter trial, Arch. Phys. Med. Rehabil., 82, 1512, 2001.

Brindley, G.S., The first 500 patients with sacral anterior root stimulator implants: general description, Paraplegia, 32, 795, 1994.

Linder, S.H., Functional electrical stimulation to enhance cough in quadriple-gia, Chest, 103, 166, 1993.

Bryden, A.M., Memberg, W.D., and Crago, P.E., Electrically stimulated elbow extension in persons with C5/C6 tetraplegia: a functional and evaluation, Phys. Med. Rehabil., 81, 80, 2000.

Lauer, R.T. et al., The function of the finger intrinsic muscles in response to electrical stimulation, IEEE Trans. Rehabil. Eng., 7, 19, 1999. Kameyama, J. et al., Electromyographic study relating to shoulder motion: control of shoulder joint by functional electrical stimulation, Tohoku J. Exp. Med., 187, 339, 1999.

Kameyama, J. et al., Restoration of shoulder movement in quadriplegic and hemiplegic patients by functional electrical stimulation using percutaneous multiple electrodes, Tohoku J. Exp. Med., 187, 329, 1999.

Handa, Y., Yagi, R., and Hoshimiya, N., Application of functional electrical stimulation to the paralyzed extremities, Neurol. Med. Chir. (Tokyo), 38, 784, 1998.

Ichie, M. et al., Control of thumb movements: EMG analysis of the thumb and its application to functional electrical stimulation for a paralyzed hand, Frontiers Med. Biol. Eng., 6, 291, 1995.

Handa, Y. et al., Functional electrical stimulation (FES) systems for restoration of motor function of paralyzed muscles — versatile systems and a portable system, Frontiers Med. Biol Eng., 4, 241, 1992.

Popovic, M.R. et al., Surface-stimulation technology for grasping and walking neuroprosthesis, IEEE Eng. Med. Biol. Mag., 20, 82, 2001. Mackenzie-Knapp, M., Electrical stimulation in early stroke rehabilitation of the upper limb with inattention, Aust. J. Physiother., 45, 223, 1999.

Chae, J. and Yu, D., A critical review of neuromuscular electrical stimulation for treatment of motor dysfunction in hemiplegia, Assist. Technol., 12, 33, 2000. Dimitrijevic, M. and Soroker, N., Mesh-glove. 2: Modulation of residual upper limb control after stroke with whole hand electrical stimulation, Scand. J. Rehabil. Med., 26, 187, 1994.

Francisco, G. et al., Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study, Arch. Phys. Med. Rehabil., 79, 549, 1996.

Carmick, J., Use of neuromuscular electrical stimulation and dorsal wrist splint to improve the hand function of a child with spastic hemiparesis, Phys. Ther., 77, 661, 1997.

Wood, D.E. et al., Is paraplegic standing by root stimulation a practical option? Conclusions from the LARSI project, in Proc. 6th Annual Conference of the IFESS, Cleveland, OH, 2001, p. 13.

Davis, R., MacFarland, W., and Emmons, S., Initial results of the Nucleus FES-22 implanted stimulator for limb movement in paraplegia, Stereotact. Funct. Neurosurg, 63, 192, 1994.

Davis, R., Patrick, J., and Barriskill, A., Development of functional electrical stimulators utilizing cochlear implant technology, Med. Eng. Phys., 23, 61, 2001.

Guiraud, D. et al., One year implanted patients follow up: SUAW project first results, in Proc. 6th Annual Conference of the IFESS, Cleveland, OH, 2001, p. 55. Davis, J.A. et al., Preliminary performance of a surgically implanted neuro-prosthesis for standing and transfers — where do we stand?, J. Rehabil. Res. Dev., 38, 609, 2001.

Davis, J.A. et al., Surgical technique for installing an eight-channel neuropros-thesis for standing, Clin. Orthop., 385, 237, 2001.

Uhlir, J.P., Triolo, R.J., and Kobetic, R., The use of selective electrical stimulation of the quadriceps to improve standing function in paraplegia, IEEE Trans. Rehabil. Eng., 8, 514, 2000.

Haugland, M. and Sinkjaer, T., Interfacing the body's own sensing receptors into neural prosthesis devices, Technol. Health Care, 7, 393, 1999. Bosnjak, R., Dolenc, V., and Kralj, A., Biomechanical response in the ankle to stimulation of lumbosacral nerve roots with spiral cuff multielectrode — preliminary study, Neurol. Med. Chir. (Tokyo), 39, 659, 1999. Bajd, T. et al., Use of functional electrical stimulation in the lower extremities of incomplete spinal cord injured patients, Artif. Organs, 23, 403, 1999. Kralj, A. et al., FES gait restoration and balance control in spinal cord-injured patients, Prog. Brain Res., 97, 387, 1993.

Daly, J.J. et al., Feasibility of gait training for acute stroke patients using FNS with implanted electrodes, J. Neurol. Sci., 179, 103, 2000. Daly, J.J. and Ruff, R.L., Electrically induced recovery of gait components for older patients with chronic stroke, Am. J. Phys. Med. Rehabil., 79, 349, 2000. Pearson, J.A. and Wenkstern, B., Habituation and sensitization of the flexor withdrawal reflex, Brain Res., 43, 107, 1972.

Grill, W.M. et al., Emerging clinical applications of electrical stimulation: opportunities for restoration of function, J. Rehabil. Res. Dev., 38, 641, 2001. Bidus, K.A., Thomas, G.R., and Ludlow, C.L., Effects of adductor muscle stimulation on speech in abductor spasmodic dysphonia, Laryngoscope, 110, 1943, 2000.

111. Barkmeier, J.M. et al., Modulation of laryngeal responses to superior laryngeal nerve stimulation by volitional swallowing on awake humans, J. Neurophys-iol., 83, 1264, 2000.

112. Curbelo, R. et al., LD Pace II, an easily programmable device for cardiomy-oplasty, Med. Eng. Phys., 23, 45, 2001.

113. Hogan, J.F., Koda, H., and Glenn, W.W., Electrical techniques for stimulation of the phrenic nerve to pace the diaphragm: inductive coupling and battery powered total implant in asynchronous and demand modes, Pacing Clin. Electrophysiol., 12, 847, 1989.

114. Glenn, W.W. et al., Fundamental considerations in pacing of the diaphragm for chronic ventilatory insufficiency: a multi-center study, Pacing Clin. Electrophysiol., 11, 2121, 1988.

115. Sauermann, S. et al., Computer aided adjustment of the phrenic pacemaker: automatic functions, documentation, and quality control, Artif. Organs, 21, 216, 1997.

116. Girsch, W. et al., Vienna phrenic pacemaker — experience with diaphragm pacing in children, Eur. J. Pediatr. Surg., 6, 140, 1996.

117. DiMarco, A.F. et al., Evaluation of intercostal pacing to provide artificial ventilation in quadriplegics, Am. J. Respir. Crit. Care Med., 163, A151, 2001.

118. DiMarco, A.F., Neural prostheses in the respiratory system, J. Rehabil. Res. Dev., 38, 601, 2001.

119. Kirkham, A.P. et al., The acute effects of continuous and conditional neuromodulation on the bladder in spinal cord injury, Spinal Cord, 39, 420, 2001.

120. Craggs, M.D. et al., SPARSI: an implant to empty the bladder and control incontinence without posterior rhizotomy in spinal cord injury, Brit. J. Urol. Int., 85, 2, 2000.

121. Grill, W.M., Bhadra, N., and Wang, B., Bladder and urethral pressures evoked by microstimulation of the sacral spinal cord in cats, Brain Res., 836, 19, 1999.

122. Grill, W.M. et al., At the interface: convergence of neural regeneration and neural prostheses for restoration of function, J. Rehabil. Res. Dev., 38, 633, 2001.

123. Borgens, R.B., Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels, Neuroscience, 91, 251, 1999.

124. Borgens, R.B., Blight, A.R., and McGinnis, M.E., Functional recovery after spinal cord hemisection in guinea pigs: the effects of applied electrical fields, J. Comp. Neurol., 296, 634, 1990.

125. Loeb, G.E. et al., BION system for distributed neural prosthetic interfaces, Med. Eng. Phys., 23, 9, 2001.

126. Cameron, T. et al., Micromodular implants to provide electrical stimulation of paralyzed muscles and limbs, IEEE Trans. Biomed. Eng., 44, 781, 1997.

127. Dupont, A. et al., Clinical trials of BION injectible neuromuscular stimulators, in Proc. 6th Annual Conference of the IFESS, Cleveland, OH, 2001, p. 7.

128. Chen, T. et al., A miniature biofuel cell, Am. Chem. Soc., 123, 8630, 2001.

129. Chapin, J. et al., Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex, Nat. Neurosci., 2, 664, 1999.

130. Maynard, E. et al., Neuronal interactions improve cortical population coding of movement direction, J. Neurosci., 19, 8083, 1999.

131. Schwartz, A., Motor cortical activity during drawing movements: population representation during sinusoid tracing, J. Neurophysiol., 70, 28, 1992.

section six

Emerging technologies chapter thirteen

Was this article helpful?

0 0
Peripheral Neuropathy Natural Treatment Options

Peripheral Neuropathy Natural Treatment Options

This guide will help millions of people understand this condition so that they can take control of their lives and make informed decisions. The ebook covers information on a vast number of different types of neuropathy. In addition, it will be a useful resource for their families, caregivers, and health care providers.

Get My Free Ebook

Post a comment