References

1. Austin, M.A. 1991. Atheroscler. Thromb. 11, 2-14. Plasma triglyceride and coronary heart disease.

2. Hodis, H.N., Mack, W.J., Azen, S.P., Alaupovic, P., Pogoda, J.M., LaBree, L, Hemphill, L.C., Kramsch, D.M. & Blankenhorn, D.H. 1994. Circulation, 90, 42-49. Triglyceride- and cholesterol-rich lipoproteins have a different effect on mild/ moderate and sereve lesion progression as assayed by quantitative coronary angiography in a controlled trial of lovastatin.

3. Bang, H.O., Dyerberg, J. & Nielsen, A.B. 1971. Lancet, 710, 1143-1145. Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos.

4. Nestel, P.J., Connor, W.E., Reardon, M.F., Connor, S.W.S. & Boston, R. 1984. J. Clin. Invest., 74, 82-89. Suppression by diets rich in fish oil of very low density lipoprotein production in man.

5. Shepherd, J. 1994. Atherosclerosis, 110, S55-S63. The flbrates in clinical practice: focus on micronised fenofibrate.

6. Staels, B., Vu-Dac, N., Kosykh, V.A., Saladin, R., Fruchart, J.-C, Dallongeville, J. & Auwerx, J. 1995. J. Clin. Invest, 95, 705-712. Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomeal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates.

7. Hertz, R., Bishara-Shieban, J. & Bar-Tana, J. 1995. J. Biol. Chem, 270, 13470-13475. Mode of action of peroxisome proliferators as hypolipidemic drugs.

8. Leaf, A. & Kang, J. 1996. J. Intern. Med., 240, 5-12. Prevention of cardiac sudden death by N-3 fatty acids: a review of the evidence.

9. Harris, W. 1997. Am. J. Clin. Nutr., 65, 1645S-1654S. n-3 fatty acids and serum lipoproteins: human studies.

10. Blok, W., Katan, M. & van der Meer, J.W. 1996. J. Nutr., 126, 1515-1533. Modulation of inflammation and cytokine production by dietary (n-3) fatty acids.

11. Gr0nn, M., Christensen, E., Hagve, T.A. & Christophersen, B.O. 1992. Biochim. Biophys. Acta, 1125, 35-43. Effects of dietary purified eicosapentaenoic acid (20:5(n-3)) and docosahexaenoic acid (22:6(n-3)) on fatty acid desaturation and oxidation in isolated rat liver cell.

12. Fr0yland, L., Vaagenes, H., Asiedu, D., Garras, A., Lie, 0. & Berge, R.K. 1996. Lipids, 31, 169-178. Chronic administration of eicosapentaenoic acid and docosahexaenoic acid as ethyl esters reduced plasma cholesterol and changed the fatty acid composition in rat blood and organs.

13. Von Schacky, C. & Weber, P.C. 1985. J. Clin. Invest., 76, 2446-2450. Metabolism and effects of platlet function of the purified eicosapentaenoic and docosahexaenoic acid in humans.

14. Berge, R.K. 1993. Omega-3 News, 1, 5-7. The triglyceride-lowering effect of omega-3 fatty acids. Is it all in eicosapentaenoic acid.

15. Soutar, A. 1978. Nature, 273, 11-12. Does dietary fat influence plasma lipiorotein structure?

16. Asiedu, D.K., Skorve, J., Willumsen, N., Demoz, A. & Berge, R.K. 1993. Biochim. Biophys. Acta, 1166, 73-76. Early effects on mitochondrial and peroxisomal P-oxidation by the hypolipidemic 3-thia fatty acids in rat livers.

17. Asiedu, D.K., Demoz, A., Skorve, J., Grav, H.J. & Berge, R.K. 1994. Biochem. Pharmacol., 49, 1013-1022. Acute modulation of rat hepatic lipid metabolism by sulphur-substituted fatty acid analogues.

18. Skorve, J., Rustan, A.C. & Berge, R.K. 1995. Lipids, 30, 987-994. Effects of non-P-oxidable sulfur-substituted fatty acid analogues on synthesis and secreation of triacylglycerol and cholesterol in cultured rat hepatocytes.

19. Fr0yland, L., Madsen, L., Sjursen, W, Garras, A., Lie, 0., Songstad, J., Rustan, A.C. & Berge, R.K. 1997. J. Lipid Res, 38, 1522-1534. Effect of 3-thia fatty acids on the lipid composition of rat liver, lipoproteins, and heart.

20. Madsen, L., Fr0yland, L., Dyr0y, E., Helland, K. & Berge, R.K. 1998. J. Lipid Res, 39, 583-593. Docosahexaenoic- and eicosapentaenoic acid are differently metabolized in rat liver during mitochondria- and peroxisome proliferation.

21. Lazo, O., Contreras, M., Yoshida, Y., Singh, A.K., Stanley, W., Weise, M. & Singh, I. 1990. J. Lipid Res., 31, 583-595. Cellular oxidation of lignoceric acid is regulated by the subcellular localization of lignoceroyl-CoA ligases.

22. Willumsen, N.,Vaagenes, H., Asiedu, D., Lie, 0., Rustan, A.C. & Berge, R.K. 1996. Lipids, 31, 579-592. Eicosapentaenoic acid but not docosahexaenoic acid (both as ethyl esters) increases mitochondrial fatty acid oxidation and upregulates 2,4-dienoyl-CoA reductase gene expression. A potential mechanism for the hypolipidemic action of fish oil in rats.

23. Willumsen, N., Hexeberg, S., Skorve, J., Lundquist, M. & Berge, R.K. 1993. J. Lipid Res., 34, 13-22. Docosahexaenoic acid shows no triglyceride-lowering effects but increases the peroxisomal fatty acid oxidation in liver of rats.

24. Fr0yland, L., Madsen, L., Vaagenes, H., Totland, G.K., Auwerx, J., Kryvi, H., Staels, B. & Berge, R.K. 1997. J. Lipid Res., 38, 1851-1858. Mitochondrion is the principal target for nutritional and pharmacological control of triglyceride metabolism.

25. Mannaerts, G.P., Debeer, L.J., Thomas, J. & DeShepper, P.J. 1979. J. Biol. Chem, 254, 4585-4595. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate treated rats.

26. Asiedu, D.K., Demoz, A., Skorve, J., Grav, H.J. & Berge, R.K. 1995. Biochem. Pharmacol., 49, 1013-1022. Acute modulation of rat hepatic lipid metabolism by sulphur-substituted fatty acid analogues.

27. Asiedu, D.K., Al-Shurbaji, A., Rustan, A.C., Bjorkhem, I., Berglund, L. & Berge, R.K. 1995. Em J. Biochem., 227, 715-722. Hepatic fatty acid metabolism as a determinant of plasma and liver triacylglycerol levels.

28. Willumsen, N., Skorve, J., Hexeberg, S., Rustan, A.C. & Berge, R.K. 1993. Lipids, 28, 683-689. The hypotriglyceridemic effect of eicosapentaenoic acid in rats is reflected in increased mitochondrial fatty acid oxidation followed by diminished lipogenesis.

29. Foreman, B.M., Chen, J. & Evans, R.M. 1996. Ann. N. Y. Acad. Sci, 804, 266-275. The peroxisome proliferateĀ« activated receptors: ligands and activators.

THE USE OF [9,10-3H]MYRISTATE, [9,10-3H]PALMITATE AND [9,10-3H]OLEATE FOR THE DETECTION AND DIAGNOSIS OF MEDIUM AND LONG-CHAIN FATTY ACID OXIDATION DISORDERS IN INTACT CULTURED FIBROBLASTS

S. E. Olpin, N. J. Manning, R. J. Pollitt, J. R. Bonham, M. Downing, and S. Clark

The Department of Neonatal Screening and Chemical Pathology Sheffield Children's Hospital Sheffield S10 2TH, UK

The release of 3H20 from [9,10-3H]myristate and/or [9,10-3H]palmitate has been used extensively for detecting medium- and long-chain fatty acid oxidation defects, both in cultured fibroblasts1,2 and in fresh lymphocytes.3 Over the past 10 years we have used both substrates to screen routinely for fatty acid oxidation defects in over 1,200 patients and have identified 113 individuals with specific fatty acid oxidation disorders (Table 1). More recently we have examined the use of a third substrate, [9,10-3H]oleate, to improve discrimination of long-chain defects.4

Dieting Dilemma and Skinny Solutions

Dieting Dilemma and Skinny Solutions

The captivating thing about diets is that you don't get what is researched or predicted or calculated but rather, you get precisely what you expect. If the diet resonates with you then it will likely work, if it doesn't resonate, it won't.

Get My Free Ebook


Post a comment