References

1. Fujiki, Y. (1997) Biochim. Biophys. Acta 1361, 235-250. Molecular defects in genetic diseases of peroxisomes.

2. Brown, F.R., 3d, McAdams, A.J., Cummins, J.W., Konkol, R., Singh, I., Moser, A.B. & Moser, H.W. (1982) Johns Hopkins Med. J. 151, 344-351. Cerebro-hepato-renal (Zellweger) syndrome and neonatal adrenoleukodystrophy: similarities in phenotype and accumulation of very long chain fatty acids.

3. Watkins, P.A., Howard, A.E. & Mihalik, S.J. (1994) Biochim. Biophys. Acta 1214, 288-294. Phytanic acid must be activated to phytanoyl-CoA prior to its alpha-oxidation in rat Liver peroxisomes.

4. Mihalik, SJ., Rainville, A.M. & Watkins, P.A. (1995) Eur. J. Biochem. 232, 545-551. Phytanic acid alphaoxidation in rat liver peroxisomes. Production of alpha-hydroxyphytanoyl-CoA and formate is enhanced by dioxygenase cofactors.

5. Croes, K., Casteels, M., de Hoffmann, E., Mannaerts, G.P. & Van Veldhoven, P.P. (1996) Eur. J. Biochem. 240, 674-683. alpha-Oxidation of 3-methyl-substituted fatty acids in rat liver. Production of formic acid instead of CO2, cofactor requirements, subcellular localization and formation of a 2-hydroxy-3-methylacyl-CoA intermediate.

6. Jansen, G.A., Mihalik, S.J., Watkins, P.A., Moser, H.W., Jakobs, C., Denis, S. & Wanders, R.J.A. (1996) Biochem. Biophys. Res. Commun. 229, 205-210. Phytanoyl-CoA hydroxylase is present in human liver, located in peroxisomes, and deficient in Zellweger syndrome: direct, unequivocal evidence for the new, revised pathway of phytanic acid alpha-oxidation in humans.

7. Croes, K., Casteels, M., Asselberghs, S., Herdewijn, P., Mannaerts, G.P. & Vanveldhoven, P.P. (1997) FEBS. Lett. 412, 643-645. Formation of a 2-methyl-branched fatty aldehyde during peroxisomal alpha-oxidation.

8. Verhoeven, N.M., Schor, D.S., ten Brink, H.J., Wanders, R.J.A. & Jakobs, C. (1997) Biochem. Biophys. Res. Commun. 237, 33-36. Resolution of the phytanic acid alpha-oxidation pathway: identification of pristanal as product of the decarboxylation of 2-hydroxyphytanoyl-CoA.

9. Singh, H., Beckman, K. & Poulos, A. (1994) J. Biol. Chem. 269, 9514-9520. Peroxisomal betaoxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria.

10. Schepers, L., Casteels, M., Verheyden, K., Parmentier, G., Asselberghs, S., Eyssen, H.J. & Mannaerts, G.P. (1989) Biochem. J. 257, 221-229. Subcellular distribution and characteristics of trihydroxycoprostanoyl-CoA synthetase in rat liver.

11. Prydz, K., Kase, B.F., Bjorkhem, I. & Pedersen, J.I. (1988) J. Lipid. Res. 29, 997-1004. Subcellular localization of 3 alpha, 7 alpha-dihydroxy- and 3 alpha,7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoyl-coenzyme A ligase(s) in rat liver.

12. Diczfalusy, U., Kase, B.F., Alexson, S.E. & Bjorkhem, I. (1991) J. Clin. Invest. 88, 978-984. Metabolism of prostaglandin F2 alpha in Zellweger syndrome. Peroxisomal beta-oxidation is a major importance for in vivo degradation of prostaglandins in humans.

13. Jedlitschky, G., Huber, M., Volkl, A., Muller, M., Leier, I., Muller, J., Lehmann, W.D., Fahimi, H.D. & Keppler, D. (1991) J. Biol. Chem. 266, 24763-24772. Peroxisomal degradation of leukotrienes by betaoxidation from the omega-end.

14. Diczfalusy, U., Vesterqvist, O., Kase, B.F., Lund, E. & Alexson, S.E. (1993) J. Lipid. Res. 34, 1107-1113. Peroxisomal chain-shortening of thromboxane B2: evidence for impaired degradation of thromboxane B2 in Zellweger syndrome.

15. de Waart, D.R., Koomen, G.C. & Wanders, R.J.A. (1994) Biochim. Biophys. Acta 1226, 44-48. Studies on the urinary excretion of thromboxane B2 in Zellweger patients and control subjects: evidence for a major role for peroxisomes in the beta-oxidative chain-shortening of thromboxane B2.

16. Suzuki, H., Yamada, J., Watanabe, T. & Suga, T. (1989) Biochim. Biophys. Acta 990, 25-30. Com-partmentation of dicarboxylic acid beta-oxidation in rat liver: importance of peroxisomes in the metabolism of dicarboxylic acids.

17. Vamecq, J., de Hoffmann, E. & Van Hoof, F. (1985) Biochem. J. 230, 683-693. The microsomal dicarboxylyl-CoA synthetase.

18. Adamski, J., Husen, B., Marks, F. & Jungblut, P.W. (1992) Biochem. J. 288, 375-381. Purification and properties of oestradiol 17 beta-dchydrogenase extracted from cytoplasmic vesicles of porcine endometrial cells.

19. Markus, M., Husen, B., Leenders, F., Jungblut, P.W., Hall, P.F. & Adamski, J. (1995) Eur. J. Cell. Biol. 68, 263-267. The organelles containing porcine 17 beta-estradiol dehydrogenase are peroxisomes.

20. Leenders, F., Tesdorpf, J.G., Markus, M., Engel, T., Seedorf, U. & Adamski, J. (1996) J. Biol. Chem. 271, 5438-5442. Porcine 80-kDa protein reveals intrinsic 17 beta-hydroxysteroid dehydrogenase, fatty acyl-CoA-hydratase/dehydrogenase, and sterol transfer activities.

21. Dieuaide-Noubhani, M., Novikov, D., Baumgart, E., Vanhooren, J.C., Fransen, M., Goethals, M., Vandekerckhove, J., Van Veldhoven, P.P. & Mannaerts, G.P. (1996) Eur. J. Biochem. 240, 660-666. Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di- and trihydroxycoprostanic acids are metabolized by separate multifunctional proteins.

22. Dieuaide-Noubhani, M., Asselberghs, S., Mannaerts, G.P. & Van Veldhoven, P.P. (1997) Biochem. J. 325, 367-373. Evidence that multifunctional protein 2, and not multifunctional protein 1, is involved in the peroxisomal beta-oxidation of pristanic acid.

23. Jiang, L.L., Kobayashi, A., Matsuura, H., Fukushima, H. & Hashimoto, T. (1996) J. Biochem. (Tokyo). 120, 624-632. Purification and properties of human D-3-hydroxyacyl-CoA dehydratase: medium-chain enoyl-CoA hydratase is D-3-hydroxyacyl-CoA dehydratase.

24. Jiang, L.L., Kurosawa, T., Sato, M., Suzuki, Y. & Hashimoto, T. (1997) J. Biochem. (Tokyo). 121, 506-513. Physiological role of D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein.

25. Qin, Y.M., Haapalainen, A.M., Conry, D., Cuebas, D.A., Hiltunen, J.K. & Novikov, D.K. (1997) Biochem. J. 328, 377-382. Recombinant 2-enoyl-CoA hydratase derived from rat peroxisomal multifunctional enzyme 2: role of the hydratase reaction in bile acid synthesis.

26. Qin, Y.M., Poutanen, M.H., Helander, H.M., Kvist, A.P., Siivari, K.M., Schmitz, W., Conzelmann, E., Hellman, U. & Hiltunen, J.K. (1997) Biochem. J. 321, 21-28. Peroxisomal multifunctional enzyme of beta-oxidation metabolizing D-3-hydroxyacyl-CoA esters in rat liver: molecular cloning, expression and characterization.

27. Novikov, D.K., Vanhove, G.F., Carchon, H., Asselberghs, S., Eyssen, H.J., Van Veldhoven, P.P. & Mannaerts, G.P. (1994) J. Biol. Chem. 269, 27125-27135. Peroxisomal beta-oxidation. Purification of four novel 3-hydroxyacyl-CoA dehydrogenases from rat liver peroxisomes.

28. Uchida, Y., Izai, K., Orii, T. & Hashimoto, T. (1992) J. Biol. Chem. 267, 1034-1041. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein.

29. Wanders, R.J.A., Denis, S., Wouters, F., Wirtz, K.W. & Seedorf, U. (1997) Biochem. Biophys. Res. Commun. 236, 565-569. Sterol carrier protein X (SCPx) is a peroxisomal branched-chain beta-ketothiolase specifically reacting with 3-oxo-pristanoyl-CoA: a new, unique role for SCPx in branched-chain fatty acid metabolism in peroxisomes.

30. Suzuki, Y., Jiang, L.L., Souri, M., Miyazawa, S., Fukuda, S., Zhang, Z., Une, M., Shimozawa, N., Kondo, N., Orii, T. & Hashimoto, T. (1997) Am. J. Hum. Genet. 61, 1153-1162. D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency: a newly identified peroxisomal disorder.

31. van Grunsven, E.G., van Berkel, E., Ulst, L., Vreken, P., de Klerk, J.B., Adamski, J., Lemonde, H., Clayton, P.T., Cuebas, D.A. & Wanders, R.J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 2128-2133. Peroxisomal D-hydroxyacyl-CoA dehydrogenase deficiency: resolution of the enzyme defect and its molecular basis in bifunctional protein deficiency.

32. Miyazawa, S., Osumi, T. & Hashimoto, T. (1980) Eur. J. Biochem. 103, 589-596. The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes.

33. Miyazawa, S., Furuta, S., Osumi, T., Hashimoto, T. & Ui, N. (1981) J. Biochem. (Tokyo). 90, 511-519. Properties of peroxisomal 3-ketoacyl-coA thiolase from rat liver.

34. Goldfischer, S., Collins, J., Rapin, I., Neumann, P., Neglia, W., Spiro, A.J., Ishii, T., Roels, F., Vamecq, J. & Van Hoof, F. (1986) J. Pediatr. 108, 25-32. Pseudo-Zellweger syndrome: deficiencies in several peroxisomal oxidative activities.

35. Schram, A.W., Goldfischer, S., van Roermund, C.W., Brouwer-Kelder, E.M., Collins, J., Hashimoto, T., Heymans, H.S., van den Bosch, H., Schutgens, R.B., Tager, J.M. & et al. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 2494-2496. Human peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency.

36. Seedorf, U., Brysch, P., Engel, T., Schrage, K. & Assmann, G. (1994) J. Biol. Chem. 269, 21277-21283. Sterol carrier protein X is peroxisomal 3-oxoacyl coenzyme A thiolase with intrinsic sterol carrier and lipid transfer activity.

37. Wirtz, K.W. (1997) Biochem. J. 324, 353-360. Phospholipid transfer proteins revisited.

38. Subramani, S. (1997) Nat. Genet. 15, 331-333. PEX genes on the rise.

39. Ohba, T., Rennert, H., Pfeifer, S.M., He, Z., Yamamoto, R., Holt, J.A., Billheimer, J.T. & Strauss, J.F. (1994) Genomics. 24, 370-374. The structure of the human sterol carrier protein X/sterol carrier protein 2 gene (SCP2).

40. Ohba, T., Holt, J.A., Billheimer, J.T. & Strauss, J.F., 3rd. (1995) Biochemistry. 34, 10660-10668. Human sterol carrier protein x/sterol carrier protein 2 gene has two promoters.

41. Antonenkov, V.D., Van Veldhoven, P.P., Waelkens, E. & Mannaerts, G.P. (1997) J. Biol. Chem. 272, 26023-26031. Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates.

42. Bunya, M., Maebuchi, M., Kamiryo, T., Kurosawa, T, Sato, M., Tohma, M, Jiang, L.L. & Hashimoto, T. (1998) J. Biochem. (Tokyo). 123, 347-352. Thiolase involved in bile acid formation.

43. Seedorf, U., Raabe, M., Ellinghaus, P., Kannenberg, F., Fobker, M., Engel, T, Denis, S., Wouters, F., Wirtz, K.W., Wanders, R.J.,Maeda,N.& Assmann, G. (1998) Genes. Dev. 12, 1189-1201. Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function.

44. van Roermund, C.W., Elgersma, Y, Singh, N., Wanders, R.J. & Tabak, H.F. (1995) EMBO. J. 14, 3480-3486. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions.

45. Baumgart, E., Fahimi, H.D., Stich, A. & Volkl, A. (1996) Journal of Biological Chemistry 271, 3846-3855. L-lactate dehydrogenase A4- and A3B isoforms are bona fide peroxisomal enzymes in rat liver. Evidence for involvement in intraperoxisomal NADH reoxidation.

46. van Roermund, C.W.T., Hettema, E.H., Kal, A.J., van den Berg, M., Tabak, H.F. & Wanders, R.J.A. (1998) EMBO. J. 17, 677-687. Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccha-romyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions.

47. Henke, B., Girzalsky, W., Berteaux-Lecellier, V. & Erdmann, R. (1998) J. Biol. Chem. 273, 3702-3711. IDP3 encodes a peroxisomal NADP-dependent isocitrate dehydrogenase required for the beta-oxidation of unsaturated fatty acids.

48. Hettema, E.H., van Roermund, C.W., Distel, B., van den Berg, M., Vilela, C., Rodrigues-Pousada, C., Wanders, R.J. & Tabak, H.F. (1996) EMBO. J. 15, 3813-3822. The ABC transporter proteins Patl and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae.

49. Shani, N., Watkins, P.A. & Valle, D. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 6012-6016. PXA1, a possible Saccharomyces cerevisiae ortholog of the human adrenoleukodystrophy gene.

50. Shani, N. & Valle, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11901-11906. A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters.

51. Swartzman, E.E., Viswanathan, M.N. & Thorner, J. (1996) J. Cell. Biol. 132, 549-563. The PAL1 gene product is a peroxisomal ATP-binding cassette transporter in the yeast Saccharomyces cerevisiae.

52. Verleur, N., Hettema, E.H., van Roermund, C.W.T., Tabak, H.F. & Wanders, R.J.A. (1997) Eur. J. Biochem. 249, 657-661. Transport of activated fatty acids by the peroxisomal ATP-binding-cassette transporter Pxa2 in a semi-intact yeast cell system.

53. Moser, H.W., Smith, K.D. & Moser, A.B. (1995) in The metabolic and molecular bases of inherited disease (Scriver, C.R., Beaudet, A.L., Sly, W.S., & Valle, D. eds), 2325-2349. McGraw-Hill, New York. X-linked adrenoleukodystrophy.

Powers, J.M. (1985) Clin. Neuropathol. 4, 181-199. Adreno-leukodystrophy (adreno-testiculo-leukomyelo-neuropathic-complex).

Singh, I., Moser, A.E., Goldfischer, S. & Moser, H.W. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4203-4207. Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy.

Lazo, O., Contreras, M., Hashmi, M., Stanley, W., Irazu, C. & Singh, I. (1988) Proc. Natl. Acad Sci. U. S. A. 85, 7647-7651. Peroxisomal lignoceroyl-CoA ligase deficiency in childhood adrenoleukodystrophy and adrenomyeloneuropathy.

Wanders, R.J., van Roermund, C.W., van Wijland, M.J., Schutgens, R.B., van den Bosch, H., Schram, A.W. & Tager, J.M. (1988) Biochem. Biophys. Res. Commun. 153, 618-624. Direct demonstration that the deficient oxidation of very long chain fatty acids in X-linked adrenoleukodystrophy is due to an impaired ability of peroxisomes to activate very long chain fatty acids.

Mosser, J., Douar, A.M., Sarde, C.O., Kioschis, P., Feil, R., Moser, H., Poustka, A.M., Mandel, J.L. & Aubourg, P. (1993) Nature. 361, 726-730. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters.

Higgins, C.F. (1992) Ann. Rev. Cell. Biol. 8, 67-113. ABC transporters: from microorganisms to man. Lageweg, W., Tager, J.M. & Wanders, R.J.A. (1991) Biochem. J. 276, 53-56. Topography of very-long-chain-fatty-acid-activating activity in peroxisomes from rat liver.

Lazo, O., Contreras, M. & Singh, I. (1990) Biochemistry. 29, 3981-3986. Topographical localization of peroxisomal acyl-CoA ligases: differential localization of palmitoyl-CoA and lignoceroyl-CoA ligases.

Feigenbaum, V., Lombard-Platet, G., Guidoux, S., Sarde, C.O., Mandel, J.L. & Aubourg, P. (1996) Am. J. Hum. Genet. 58, 1135-1144. Mutational and protein analysis of patients and heterozygous women with X-linked adrenoleukodystrophy.

Kemp, S., Mooyer, P.A., Bolhuis, P.A., van Geel, B.M., Mandel, J.L., Barth, P.G., Aubourg, P. & Wanders, R.J. (1996) J. Inherit. Metab. Dis. 19, 667-674. ALDP expression in fibroblasts of patients with X-linked adrenoleukodystrophy.

Watkins, P.A., Gould, S.J., Smith, M.A., Braiterman, L.T., Wei, H.M., Kok, F., Moser, A.B., Moser, H.W. & Smith, K..D. (1995) Am. J. Hum. Genet. 57, 292-301. Altered expression of ALDP in X-linked adrenoleukodystrophy.

Poll-The, B.T., Roels, F, Ogier, H., Scotto, J., Vamecq, J., Schutgens, R.B.H., Wanders, R.J.A., van Roermund, C.W.T., van Wijland, M.J., Schram, A.W & et al. (1988) Am. J. Hum. Genet. 42, 422-434. A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy).

Wanders, R.J., Schelen, A., Feller, N., Schutgens, R.B., Stellaard, F., Jakobs, C., Mitulla, B. & Seidlitz, G. (1990) J. Inherit. Metab. Dis. 13, 371-374. First prenatal diagnosis of acyl-CoA oxidase deficiency. Watkins, P.A., McGuinness, M.C., Raymond, G.V., Hicks, B.A., Sisk, J.M., Moser, A.B. & Moser, H.W. (1995) Ann. Neural. 38, 472-477. Distinction between peroxisomal bifunctional enzyme and acyl-CoA oxidase deficiencies.

Watkins, P.A., Chen, W.W., Harris, C.J., Hoefler, G, Hoefler, S., Blake, D.C., Jr., Balfe, A., Kelley, R.I., Moser, A.B., Beard, M.E. & et al. (1989) J. Clin. Invest. 83, 771-777. Peroxisomal bifunctional enzyme deficiency.

Furuta, S., Miyazawa, S., Osumi, T, Hashimoto, T. &Ui, N. (1980) J. Biochem. (Tokyo). 88,1059-1070. Properties of mitochondria and peroxisomal enoyl-CoA hydratases from rat liver. McGuinness, M.C., Moser, A.B., Poll-The, B.T. & Watkins, P.A. (1993) Biochem. Med. Metab. Biol. 49, 228-242. Complementation analysis of patients with intact peroxisomes and impaired peroxisomal betaoxidation.

Wanders, R.J., van Roermund, C.W., Brul, S., Schutgens, R.B. & Tager, J.M. (1992) J. Inherit. Metab. Dis. 15, 385-388. Bifunctional enzyme deficiency: identification of a new type of peroxisomal disorder in a patient with an impairment in peroxisomal beta-oxidation of unknown aetiology by means of complementation analysis.

Moser, A.B., Rasmussen, M., Naidu, S., Watkins, P.A., McGuinness, M., Hajra, A.K., Chen, G., Raymond, G., Liu, A., Gordon, D. & et al. (1995) J. Pediatr. 127, 13-22. Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups.

Wanders, R.J., Jansen, G.A., van Roermund, C.W., Denis, S., Schutgens, R.B. & Jakobs, B.S. (1996) Ann. N. Y. Acad. Sci. 804, 450-460. Metabolic aspects of peroxisomal disorders.

74. Paton, B.C., Sharp, P.C., Crane, D.I. & Poulos, A. (1996) J. Clin. Invest. 97, 681-688. Oxidation of pristanic acid in fibroblasts and its application to the diagnosis of peroxisomal beta-oxidation defects.

75. van Grunsven, E.G. & Wanders, R.J. (1997) J. Inherit. Metab. Dis. 20, 437-440. Genetic heterogeneity in patients with a disorder of peroxisomal beta-oxidation: a complementation study based on pristanic acid beta-oxidation suggesting different enzyme defects.

76. van Grunsven, E.G., van Roermund, C.W., Denis, S. & Wanders, R.J. (1997) Biochem. Biophys. Res. Commun. 235, 176-179. Complementation analysis of fibroblasts from peroxisomal fatty acid oxidation deficient patients shows high frequency of bifunctional enzyme deficiency plus intragenic complementation: unequivocal evidence for differential defects in the same enzyme protein.

77. Steinberg, D. (1995) in The metabolic and molecular bases of inherited disease (Scriver, C.R., Beaudet, A.L., Sly, W.S., & Valle, D. eds), 2351-2369. McGraw-Hill, New York. Refsum disease.

78. Tsai, S.C., Avigan, J. & Steinberg, D. (1969) J. Biol. Chem. 244, 2682-2692. Studies on the alpha oxidation of phytanic acid by rat liver mitochondria.

79. Poulos, A., Sharp, P., Singh, H., Johnson, D.W., Carey, W.F. & Easton, C. (1993) Biochem. J. 292, 457-461. Formic acid is a product of the alpha-oxidation of fatty acids by human skin fibroblasts: deficiency of formic acid production in peroxisome-deficient fibroblasts.

80. Singh, I., Pahan, K., Dhaunsi, G.S., Lazo, O. & Ozand, P. (1993) J. Biol. Chem. 268, 9972-9979. Phytanic acid alpha-oxidation. Differential subcellular localization in rat and human tissues and its inhibition by nycodenz.

81. Wanders, R.J., van Roermund, C.W., Jakobs, C. & ten Brink, H.J. (1991) J. Inherit. Metab. Dis. 14, 349-352. Identification of pristanoyl-CoA oxidase and phytanic acid decarboxylation in peroxisomes and mitochondria from human liver: implications for Zellweger syndrome.

82. Wanders, R.J. & van Roermund, C.W. (1993) Biochim. Biophys. Acta 1167, 345-350. Studies on phytanic acid alpha-oxidation in rat liver and cultured human skin fibroblasts.

83. Verhoeven, N.M., Roe, D.S., Kok, R.M., Wanders, R.J.A., Jakobs, C. & Roe, C. (1998) J. Lipid. Res. 39, 66-74. Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts.

84. Jansen, G.A., Ofman, R., Ferdinandusse, S., IJlst, L., Muijsers, A.O., Skjeldal, O.H., Stokke, O., Jakobs, C., Besley.G.T., Wraith, J.E. & Wanders, R.J.A. (1997) Nat. Genet. 17,190-193. Refsum disease is caused by mutations in the phytanoyl-Co A hydroxylase gene.

85. Braverman, N., Steel, G, Obie, C., Moser, A.B., Moser, H.W., Gould, S.J. & Valle, D. (1997) Nat. Genet. 15, 369-376. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata.

86. Motley, A.M., Hettema, E.H., Hogenhout, E.M., Brites, P., ten Asbroek, A.L., Wijburg, F.A., Baas, F., Heijmans, H.S.A., Tabak, H.F., Wanders, R.J.A. & Distel, B. (1997) Nat. Genet. 15, 377-380. Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor.

87. Purdue, P.E., Zhang, J.W., Skoneczny, M. & Lazarow, P.B. (1997) Nat. Genet. 15, 381-384. Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor.

88. Jansen, G.A., Mihalik, S.J., Watkins, P.A., Moser, H.W., Jakobs, C., Heijmans, H.S. & Wanders, R.J. (1997) J. Inherit. Metab. Dis. 20, 444-446. Phytanoyl-CoA hydroxylase is not only deficient in classical Refsum disease but also in rhizomelic chondrodysplasia punctata.

89. Mihalik, S.J., Morrell, J.C., Kim, D., Sacksteder, K.A., Watkins, P.A. & Gould, SJ. (1997) Nat. Genet. 17, 185-189. Identification of PAHX, a Refsum disease gene.

This Page Intentionally Left Blank

0 0

Post a comment