Authors Perspective

We minimize the risks of tympanostomy tube otorrhea by

(1) addressing patient characteristics, comorbidities, and behaviors; (2) considering practical ear characteristics (mesotympanic fluid and mucosa, and eustachian caliber); and (3) antiseptic ear cleansing, and irrigating until accessible mesotympanic fluid is cleared. In infants with cleft palate, assuming that behavioral audiometry has not revealed worse than a mild loss (in the better-hearing ear), we like to defer tympanostomy tube placement until the anesthetic at which the cleft is repaired, typically at 9 to 12 months of age. In acquired immunodeficiency syndrome (AIDS) patients, and in patients with immotile cilia syndrome, we try to avoid placing tympanostomy tubes; for persistent non-suppurative fluid with clinically significant bilateral hearing loss, amplification seems appropriate. Bottle feeding in the supine position is discontinued before tympanostomy tube insertion. Graduation from the bottle by the first birthday is encouraged. The otitis-exaggerating effects of day care and smoke exposure are discussed with the family.

At tympanostomy tube placement, we like to obtain meso-tympanic fluid for bacteriologic assessment (Gram stain, and culture and sensitivity). The data are not only a preemptive guide to the antimicrobial treatment of postoperative otorrhea, but also a measure of clinically significant respiratory bacteria in the community. For example, the finding of highly resistant Streptococcus pneumoniae in the mesotympanum in a generally healthy 18-month-old day care attendee may prompt a discussion of the risks versus benefits of the child being in that particular day care scenario. If the microbe burden in the meso-tympanic fluid is low, as evidenced by absence of organisms on Gram stain, and the culture reveals Hemophilis influenzae or Moraxella catarrhalis, otorrhea usually does not manifest. By contrast, if Gram-positive diplococci are found in the smear, purulent otorrhea is likely, and antimicrobial treatment is advised.

We like to prepare the ear with povidone-iodine and rinse with sterile saline. We like to irrigate the mesotympanum with saline, until all available mucoid or purulent fluid is removed. Information on eustachian caliber is helpful in deciding which patients should avoid water into the ears, as well as prognostically.

If otorrhea occurs, we prefer to examine the patient, perform aural suctioning while viewing with a microscope, and obtain a specimen (through the tympanostomy tube26) for Gram stain, culture, and sensitivity. The ear is examined for a malpositioned tube, granulation tissue, cholesteatoma, and smoldering mastoiditis. A hydrocellulose wick is placed and expanded with nonototoxic nonallergenic Domeboro otic drops. Domeboro otic solution is well tolerated onto a wick. We advise 4 gtts q.i.d. for 4 days. By day 4, bacteriologic data are available: if Streptococcus pneumoniae are found, an appropriate antimicrobial is prescribed by mouth, and Domeboro gtts continued an additional 4 days. If the bacteriologic data are negative, or show other microorganisms, the parent removes the wick on day 4, stops the Domeboro gtts, and keeps water and Q-tips out of the ear. The wick serves three purposes: (1) assists in delivery of the pH-normalizing medication into the ear; (2) helps calm the often-concomitant inflammation of the external ear canal; and (3) prevents the patient from placing fingers or other objects into the ear.

A practical alternative to seeing the patient is to prescribe ofloxacin drops; we typically do this for the otherwise healthy patient. We avoid topical aminoglycosides, unless the case is recalcitrant and bacteriologic data endorse their use.

0 0

Post a comment