Assessment

HISTORY. Determine the details of the immediate injury. Question the patient if possible, relatives if present, and any witnesses, including bystanders, the police, and the life squad. Note that the obvious injuries may not be the most serious ones. For example, a leg injury may be evident, whereas the pelvic fracture caused by force to the knee or leg during a car crash may be more serious. Obtain information from family or friends about the usual health status. Determine the past medical history, with particular attention to life span considerations such as pregnancy, chronic diseases such as diabetes and hypertension, and patterns of substance abuse.

PHYSICAL EXAMINATION. In the immediate trauma resuscitation, assessment and treatment are merged. Always of first priority is the assessment and management of airway, breathing, and circulation. Neurological status becomes part of that initial assessment, as the patient is often in a compromised state of consciousness. Monitor the vital signs every 15 minutes or more often until the patient is stabilized. The patient may demonstrate a wide range of blood pressures and heart rates, depending on age, degree of blood loss, baseline vital signs, and degree of alcohol intoxication.

During the physical examination, handle the patient carefully and be aware that any fractures can be made more serious by the manipulation caused by examination. If the cervical spine is injured, movement can lead to lifelong disability. Broken ribs may not initially pose a serious problem for the patient, but with rough handling, they may become displaced and cause damage to the pleura and lungs. Manipulation of broken bones also causes increased pain and blood loss. Inspect the patient thoroughly for evidence of fractures, including angulation or shortening of limbs, open wounds, and changes in color from the rest of the body. Note any swelling or muscle spasms of the limbs, which may indicate injuries not apparent initially. Palpate any areas suspected of injury, noting the contour of surrounding bones. Check the range of motion of all joints, listening for crepitus and noting any signs of pain from the patient during the examination, but do not move an obviously injured extremity to test for range of motion. Complete a neurovascular examination, checking pulses, capillary refill, and response to sharp and dull pain stimuli.

PSYCHOSOCIAL. The patient with serious musculoskeletal injury is usually seen in the emergency department and is often in hypovolemic shock. As the patient becomes conscious, the effect of the trauma may be overwhelming; alternatively, the patient may have no memory of the trauma and be distraught to find herself or himself in the hospital. The older patient who has fallen and suffered a broken hip often becomes confused from the trauma. As the situation becomes clearer, the fear of hospitalization and becoming dependent on others poses a real problem. The patient may deny having a fracture or may not realize that fracture and a broken bone are synonymous.

The sudden nature of multiple trauma presents serious psychological stressors to the patient, family, and significant others. Often, the victim is young and healthy; parents become extremely anxious, angry, guilty, and even despairing when their child is injured and they cannot protect him or her from danger. Peers often rally to support a classmate; their numbers may overwhelm the visiting area and the hospital's resources. A careful assessment of the family's and peer's response to trauma is important if interventions are to be constructive.

Diagnostic Highlights

Test

Normal Result

Abnormality with Condition

Explanation

Urine myoglobin

Negative

Positive; >20 ng/mL

Myoglobin is a heme-containing,

Diabetes 2

Diabetes 2

Diabetes is a disease that affects the way your body uses food. Normally, your body converts sugars, starches and other foods into a form of sugar called glucose. Your body uses glucose for fuel. The cells receive the glucose through the bloodstream. They then use insulin a hormone made by the pancreas to absorb the glucose, convert it into energy, and either use it or store it for later use. Learn more...

Get My Free Ebook


Post a comment